
zfit: Compression of FIT files with Delta Coding

FIT is a extensible binary format for arbitrary data developed by Dynastream and
used by Garmin and others as a recording format for exercise and GPS data.

In a resource-constrained headunit or watch, it is desirable to compress the FIT
data to fit longer recordings in limited storage. But standard data-compression
algorithms require more memory than is commonly available in small, battery-
powered devices.

zfit combines a delta coding preprocessor with an off-the-shelf embedded
compression engine to achieve lossless compression ratios approaching 50%,
requiring less than 2048 bytes of memory while doing so.

Introduction

Mark Rages
August 2014

Inside the FIT file format is a small header, then a series of data records,
comprised of definition messages and data messages. The definition messages
provide a mapping between the data messages and an external, global profile.
The data messages contain the data itself. Each data message refers to a
previous definition message for the details of its contents. The definition
messages do not have to be repeated, allowing the storage density to approach a
plain binary dump.

Each data message has a header describing which data definition it follows,
which is usually a single byte followed by the data.

FIT Overview

The main compression is handled by the 'heatshrink' embedded compression
library, obtained from https://github.com/atomicobject/heatshrink.

This library can be configured to encode using small amounts of memory, and
without dynamic memory allocation, which makes it well suited to compression
within embedded systems.

'heatshrink' is an implementation of LZSS which can be configured to run in
under 100 bytes of memory. (There is a memory use vs. compression tradeoff.)

Heatshrink Library

Many times, subsequent data messages do not vary much. For example,
timestamps increment a second at a time. And geographical locations do not
change suddenly. So a simple approach to condition the data is to subtract each
field from the previous one. Then repeated values become (highly compressible)
zeroes.

Delta coding doesn't change the file size in itself, but improves compression
performance by 20~30%. The better the compression algorithm, the more delta
encoding helps:

Delta Encoding

heatshrink has two parameters, window size and lookahead size. I ran the
algorithm through a corpus of Garmin-encoded FIT files to choose the best
parameters:

Heatshrink Parameter Choice

+----------+------+------+------+------+------+------+------+------+
| hs param | l=3 | l=4 | l=5 | l=6 | l=7 | l=8 | l=9 | l=10 |
+----------+------+------+------+------+------+------+------+------+
w=6	0.59	0.59	0.60	--	--	--	--	--
w=7	0.57	0.57	0.58	0.59	--	--	--	--
w=8	0.55	0.55	0.56	0.58	0.59	--	--	--
w=9	0.54	0.54	0.55	0.56	0.58	0.60	--	--
w=10	0.53	0.53	0.54	0.55	0.57	0.59	0.60	--
w=11	0.53	0.52	0.53	0.54	0.56	0.58	0.60	0.62
+----------+------+------+------+------+------+------+------+------+

Based on this, w=9 and l=4 seems like a reasonable choice. (The choice of w
affects the amount of memory needed for encoding.)

+-------------------------------------+------+---------+---------+----------+-------+-----------+
| zip algorithm | mem | size | zip | delt+zip | ratio | deltratio |
+-------------------------------------+------+---------+---------+----------+-------+-----------+
'gzip'	?	6126698	3728252	2595275	0.61	0.42
'bzip2'	?	6126698	3964347	2194608	0.65	0.36
'heatshrink/heatshrink -w 6 -l 3'	144	6126698	4821560	3598916	0.79	0.59
'heatshrink/heatshrink -w 6 -l 4'	144	6126698	4825146	3620196	0.79	0.59
'heatshrink/heatshrink -w 6 -l 5'	144	6126698	4853454	3693858	0.79	0.60
'heatshrink/heatshrink -w 7 -l 3'	272	6126698	4773710	3471387	0.78	0.57
'heatshrink/heatshrink -w 7 -l 4'	272	6126698	4771920	3478001	0.78	0.57
'heatshrink/heatshrink -w 7 -l 5'	272	6126698	4799624	3551310	0.78	0.58
'heatshrink/heatshrink -w 7 -l 6'	272	6126698	4866119	3644768	0.79	0.59
'heatshrink/heatshrink -w 9 -l 4'	1040	6126698	4678868	3286301	0.76	0.54
+-------------------------------------+------+---------+---------+----------+-------+-----------+

The delta encoder has a small buffer of memory to hold the last value of each
local FIT message definition. This buffer is adjustable in size. FIT definitions
beyond the buffer size will not be delta encoded, so the best choice of buffer size
will be just enough to cover all message definitions. The parameter supplied is
log2() of the actual buffer size.

Delta Encoding Parameter

The file 'fit_delta_encode.c' contains a basic FIT parser and delta encoder /
decoder. Instead of tracking the widths of each FIT field for the subtraction, the
algorithm simply subtracts individual bytes, modulo 256. This acheives about
the same compression benefit while reducing external knowledge required in the
parser.

Delta Encoding Implementation

The subdirectories 'dynamic/' and 'static/' contain dynamically allocated zfit
encoder / decoders, and a statically allocated encoder for embedded use.

The heatshrink file format does not encode the heatshrink parameters, so a three
byte header is prepended to the zipped file to allow unzipping without supplying
them. This gives flexibility to the encoder to adjust parameters as needed.

Heatshrink Implementation

zfit header
+-----+--------+---+
| 'Z' | [w][l] | b |
+-----+--------+---+
w and l are window and lookahead parameters.
w in 4 most significant bits.
l in 4 least significant bits.
b is the buffer size parameter

