
Resampling Event-Based power data to fixed timebase

October 2012

Crank-based power meter data is traditionally sampled per revolution. This
uneven sampling rate produces smoother power data by rejecting the cadence*2
signal from the pulses of power from each leg's stroke, and the cadence*1 signal
from L-R stroke imbalances.

For analysis, the data could be used in the unevenly-sampled domain, but most
analysis algorithms prefer to work on evenly-sampled data. So the problem is to
convert the unevenly-sampled data into evenly-sampled data.

One important criterium of a resampling algorithm is how well the energy
content in the file is preserved. For example, consider the following two crank
revolutions. The first is at 60 RPM (one second) and averages 600W, and the
second is at 20 RPM (three seconds) and averages 66.7 W.

1 2 3 4 5

100

200

300

W

t

400

500

600

The energy of the first crank revolution is 600 W * 1 s, or 600 J. The energy of the
second revolution is 66.7 W * 3 s, or 200 J. The objective for resampling is to have
the resampled signal maintain the same energy content.

Mark Rages, Quarq / SRAM

Let us consider resampling to a one-second timebase. Each second can be
considered a bin that we distribute some of the incoming energy to. Graphically,
the result will look like this:

1 2 3 4 5

100

200

300

W

t

400

500

600

Now the energy in the first bin is 400 J, the second bin is 200 J + 44.4 J, the energy
in the third and fourth bins is 66.7 J each, and the energy in the last bin is 22.2J.
Because we are resampling to a one-second timebase, each energy is numerically
equivalent to the average watts for that bin. So the wattage looks like this:

1 2 3 4 5

100

200

300

W

t

400

500

600

The energy is redistributed in time a little bit, but computing the average will work
correctly.

Here is an ANSI-C implementation of the algorithm:

typedef struct {
 float duration; // of the power sample in seconds
 float power; // average, in watts
} resample_t;

const float resample_period=1.0; // seconds

float *resample(resample_t input[], int count, int *outcount) {
 int in_i,out_i;
 float duration = 0.0;

 for (in_i=0; in_i<count; in_i++) {
 duration += input[in_i].duration;
 }

 int output_bins = ceilf(duration / resample_period);
 float* ret = (float *)calloc(output_bins,sizeof(float));

 float out_starttime=0.0;
 float in_starttime=0.0;

 for (in_i=0, out_i=0; (in_i<count) && (out_i<output_bins);) {

 float in_endtime = in_starttime+input[in_i].duration;
 float out_endtime = out_starttime+resample_period;

 float overlap_start = max(in_starttime, out_starttime);
 float overlap_end = min(in_endtime, out_endtime);

 float overlap_duration = overlap_end - overlap_start;

 assert(overlap_duration >= 0);

 ret[out_i] += input[in_i].power * overlap_duration / resample_period;

 // move along appropriate pointers
 if (in_endtime < out_endtime) in_i++, in_starttime = in_endtime;
 else out_i++, out_starttime = out_endtime;
 }

 *outcount=output_bins;
 return ret;
}

